Smart monitoring aids Las Vegas

Echoshore®-TX detects leaks early on transmission main, p. 6

Pressure management to prevent main breaks, p. 8

Curbing water loss with autoflushing, p. 9
Drought-stricken areas of the United States continue to carefully monitor their water resources and examine the state of their water infrastructure as supplies dwindle, impacting nearly every corner of the regions affected. In California, residents voted drought as its top concern over other issues such as the economy and employment, according to a 2015 poll commissioned by the California Water Foundation. The survey also indicated residents were willing to pay more to fund infrastructure improvements. With mandated water usage restrictions in place, communities must work to ensure water resources are managed efficiently and wisely.

There are a variety of approaches and methods available to help water utilities combat the effects of extreme drought in their communities. This publication, fittingly titled the Drought Handbook, highlights solutions that can help your organization monitor water networks, detect pipeline leaks, assess the state of your water infrastructure and more. With the need to improve infrastructure cited as vital in much of these drought-affected areas, it is important to take a look at your water network and gauge areas where you can rein in costs, reduce non-revenue water and manage resources effectively. The more tools utilities have in their arsenal, the more they can combat drought and keep precious water systems intact.

In This Issue

1. **Water Balance**
 - Balance Act: The Importance of Auditing
 - Tips on how and where a utility can start a water balance

2. **Metering**
 - Finding Leaks Before Conventional Detection
 - Smart acoustic nodes make an impact on utilities

3. **Distribution Systems Monitoring**
 - Finding Leaks Before Conventional Detection
 - Smart acoustic nodes make an impact on utilities

4. **Transmission Systems Monitoring**
 - Smart Monitoring Keeps Major Metropolitan Utility in the Know: A Case Study
 - The EchoShore® Tez1_MuellerDroughtHandbookX platform central role in Las Vegas

5. **Leak Repair**
 - Rapid Approaches to Pipeline Leak Repair
 - Variety of solutions and applications available to stay efficient and cost effective

6. **Pressure Management**
 - Monitoring Pressure Helps Conserve Water
 - Importance of continuous monitoring throughout the distribution system

7. **Automated Flushing**
 - Automatic Flushing Saves Birmingham $300,000 Annually
 - Reducing water loss while managing hydrant flushing maintenance

8. **Hydrant Integrity**
 - Securing Fire Hydrants Prevents Unauthorized Water Loss
 - Devices defend water supply from theft and accidents

9. **Capital Improvement Planning**
 - Pipeline Assessments Help Extend Tight Budgets
 - Analyzing capital improvement programs to aid in utility decision-making

Balance Act: The Importance of Auditing

What is a water balance? A water balance, or water audit, is a method of identifying and tracking the abstraction, treatment and distribution of water for sale to a utility’s customers, and identifying where and why any losses of water are occurring in addition to the volume and value of the losses.

Why is it beneficial for a utility to have one in place and what kind of information is gathered?

Just like any business, a city needs to know how much product (water) is produced and placed into the system for sale to the customers, so the revenue can be used to operate and maintain components of the water system. In developing a water balance, all components and operational areas where losses, such as leakage and metering errors, can occur are identified and evaluated. Strategies are then developed to efficiently reduce the impact of these losses and to increase revenue recovery and reduce operational costs.

With a plan in place, can a city access any state/federal funding, or does it help in capital improvement planning (CIP) efforts? Yes, the U.S. Environmental Protection Agency (EPA) Drinking Water State Revolving Funds (DWSRF) are one source of loans and financing for non-revenue water studies, which are one component of water conservation, sustainable infrastructure and water efficiency programs. Recently the DWSRF allowed the inclusion of the purchase of leak detection equipment, water meters, AMR/AMI systems, and water mains rehabilitation and/or replacement. The funds have a category called “Green Project Reserves” that are to be specifically used for water audits, replacement of malfunctioning meters, leak detection studies and water use efficiency baseline studies.

About the Author

James Fisher is the Manager of Non-Revenue Water Solutions and the North Midwest Regional Sales Manager for Echologics, an affiliate of Mueller Co., LLC. He has more than 40 years’ experience working in the water and wastewater industry, holding positions in both the municipal and private sectors. He is a member of the AWWA Water Loss Control Committee and Customer Metering Practices Committee. He has spent most of his career working on projects in more than 300 cities in North America and abroad.
Finding Leaks Before Conventional Detection

Early leak detection is vital for distribution systems, with the ability to identify system failure points before they impact customer levels of service. When water resources are limited, early detection is a valuable tool in reducing non-revenue water and extending pipe asset life. A fixed leak detection technology, Echologics’ EchoShore®-DX platform, is changing the way water main leaks are identified and repaired.

Pennsylvania American Water in Liberty, PA, was field-testing the new technology when it located a growing leak in a susceptible portion of the distribution system. After two attempts to detect leaks with conventional ground sounding equipment, a third inspection—this time accompanied by Echologics specialists—exposed a long crack in the bottom of the pipe, beginning in the spigot’s end, that was saturating the soil at 9 gallons per minute (GPM).

“You’ve never seen anything like this, where a leak was identified so early in its history—almost immediately after it occurred,” said David Hughes of American Water. “This leak would have gone undetected with our traditional equipment, and it likely would have become a catastrophic failure similar to pipes that literally burst apart, creating costly property damage and substantial water loss.”

West Virginia American Water in Charleston, WV, which typically produces 25 million gallons per day (MGD), credits the EchoShore-DX platform with reducing water loss by 2.3 MGD in the first four months of operation. Another 2 MGD of water loss was recovered from a transmission main leak, picked up by the DX system through ground vibration.

American Water has been piloting and implementing the automated acoustic monitoring system, which is capable of detecting noise signatures of potential leaks and other problems within the system. The EchoShore-DX platform utilizes sophisticated sensors and processing algorithms that analyze data from events detected by two or more nodes, which are installed and fixed onto existing fire hydrants, to identify and locate potential leaks or flow issues. The nodes collect essential data on the pipeline and is readily available for analysis by water operators, giving utilities like those in Liberty and Charleston the chance to find potentially costly—and difficult-to-detect—leaks.

For more information about Echologics’ compact leak detection correlator, visit www.droughtbook.com/#leakfindert.
Smart Monitoring Keeps Major Metropolitan Utility in the Know: A Case Study

The EchoShore-TX monitoring platform plays a central role in the Las Vegas Valley Water District (LVVWD) leak monitoring program. Part of the Global City Teams Challenge sponsored by the U.S. Department of Commerce’s National Institute of Standards and Technology, the project has LVVWD teaming up with Echologics and several other innovative partners to ensure round-the-clock monitoring of the 90-in. diameter underground water main running beneath the Las Vegas Strip—no easy task when considering the multitude of underground water main running beneath the city. The EchoShore-TX platform uses sophisticated acoustic sensors and proprietary processing algorithms to detect potential leaks in large-diameter pipelines long before they become detectable by conventional means. The importance of detecting such leakages early and before they become too serious and costly to fix—and more importantly, before they rupture and cause catastrophic damage—is emphasized by Charles Scott, engineering project manager for the LVVWD.

“This type of pipe doesn’t just catastrophically fail all of a sudden,” he says. “Rather, it fails by having a very small leak, which develops into a larger leak, eventually becoming a sinkhole. This technology enables us to monitor the pipe on a continuous basis, detect those small leaks before they get to be big leaks, and schedule repairs as needed—enabling us to significantly extend the life of our pipes.”

Using wireless connectivity provided by Global City Teams Challenge partner AT&T, the 24 EchoShore-TX nodes installed in Las Vegas collect data about the pipeline and regularly upload it to a secure server, where advanced algorithms search for leak signals within the data and generate reports that can be easily viewed on a customized user interface. The system also sends alerts to the mobile devices of utility operators, enabling them to react to any detected leaks or problems immediately.

The entire deployment of the EchoShore-TX system—a noninvasive process encompassing installation, commissioning, testing and activation—was completed in a little over two weeks on the Las Vegas Boulevard, without interruption to water service or aboveground traffic. The city is already known for its efforts to conserve water and has reached one of the lowest rates of water loss in the country at 5.6%, implementation of the EchoShore TX technology serves to strengthen its mission to bring water loss as close to zero as possible. “This kind of advanced technology opens up a whole new world for water utilities,” says David Johnson, LVVWD deputy general manager. “It gives us a new set of eyes and ears within our underground water distribution network, enables us to fully optimize the life cycles of our pipelines and helps us become more fiscally responsible.”

For more information about Echologics’ leak detection solution for large-diameter pipelines, visit www.droughtbook.com/echoshore-tx.

Rapid Approaches to Pipeline Leak Repair

Once detected, pipeline water leaks should be addressed and repaired to prevent further water from escaping infrastructure systems, particularly those in areas hit hard by drought. There are a variety of technologies available to repair leaks, depending on their location within the system and their size. According to the EPA, the most significant portion of leak repair cost and time is due to the work involved in uncovering pipelines and dewatering sites. Because of this, the optimum solution for leak repair requires minimal disruption to pipeline locations.

One common approach is the repair clamp, which is a collar that can be fitted around the outside of the pipe. The clamp patches over the hole or break with a gasket that is compressed onto the surface of the pipe, providing a pressure-tight fitting to contain the leak. Mike Lent, superintendent for the Apple Valley Ranchos Water Company, discussed his use of Mueller’s pipe repair products:

Q: Can you describe Apple Valley’s water distribution system and what makes it so unique?
Mike Lent: We’re a large system that covers 59 square miles and has almost 20,000 service connections, serving 65,000 people in Apple Valley, CA. Because of our elevation changes we have 16 different pressure zones, so we’re serviced by tanks, wells, booster pumps and mostly gravity feed.

Q: Where are you using Mueller’s pipe repair products, specifically repair clamps, in your efforts to prevent water loss?
Lent: We’ve used them for small service line leaks, from ¾-in. PE pipe all the way up to 12-in. welded steel pipes, and they seem to make it easier for us to fix the leak under pressure. With the age of our system we don’t like to shut the water mains down, so just about everything we do is live. It helps us get the leak repaired in a cost-efficient, timely and also safe manner.

Q: What do you find unique about Mueller’s products and services?
Lent: The ease of use, and they have so many applications that we try to stock everything that we might need. If we don’t have it, our distributor will have it for us the next day. We use everything from a ¾-in. clamp all the way up to a 30-in. clamp for our bigger pipes.

Q: What kind of results have you seen using these products?
Lent: It’s made it that much more cost effective to get the water leaks repaired and get them repaired in a timely fashion, and when you have customers standing there looking over your repairs, it makes it easier to have the right product for the job.

For more information about Mueller Co.’s portfolio of pipeline repair products, visit www.droughtbook.com/leakrepair.
Monitoring Pressure Helps Conserve Water

Pressure management throughout the distribution system is vital for maintaining system reliability. Fluctuations in pressure can negatively impact the physical integrity of pipes. A loss of pressure can result in groundwater contamination, while surges can create leaks and main breaks, all of which have a dramatic impact on the life of the infrastructure. By continuously monitoring pressure throughout the system, utilities in drought-stricken locations can be proactive by completing repairs or replacements before damage and water loss become costly.

Bridging the Gap

A November 2014 survey conducted by American Water revealed major gaps in the actions utilities have taken to address pressure. Of the 36 utilities surveyed, most had minimum-pressure requirements in place, but 56% had no maximum-pressure requirements. Sixty-seven percent of systems surveyed did not manage peak pressures, and only 13% conducted pressure monitoring at critical locations. Many utilities only employ continuous monitoring at the distribution inlets and outlets, with limited monitoring in between. Of the systems surveyed in the American Water study, the most common areas for monitoring include pump stations, pressure-reducing valve stations, water production facilities and storage tanks—all utility-owned locations. Without systemwide pressure monitoring in between, it is difficult to pinpoint problem areas where leaks or pipe bursts could potentially occur.

Continuous Monitoring

Remote wireless pressure monitoring is the ideal solution and helps a utility continually monitor pressure and prevent unnecessary water loss, repairs or service interruptions. These systems typically consist of a sensor to collect and analyze data; a remote server for data acquisition and analysis; a browser interface to allow user interaction; and a method of transmitting and receiving wireless data. The systems are also integrated with existing network infrastructure and generally allow for customizable pressure and condition alerts for personnel. By monitoring actual pressures throughout the entire distribution system, utilities can analyze pump operations and better manage water quality while reducing operations and maintenance costs. Through continuous monitoring, contamination, leaks and main breaks can all be minimized or avoided, decreasing non-revenue water loss and aiding a utility in its water conservation efforts.

Automatic Flushing Saves Birmingham $300,000 Annually

As part of a distribution system maintenance program, hydrant flushing is the traditional method for clearing water lines and ensuring water quality. Typically performed annually, the process utilizes thousands of gallons of water per flush, resulting in non-revenue water loss for the sake of maintenance. In areas of drought, this water is a scarce resource and flushing makes conservation difficult.

In Birmingham, AL, routine flushing combined with resident complaints about poor water quality and the city’s difficulty maintaining the required chlorine residual resulted in the city performing frequent flushing. In some cases, flush points would run for hours at a time, leading to a significant loss of non-revenue water. Furthermore, drought conditions caused the city to restrict routine flushing to save water, which made maintaining the chlorine residual even more difficult.

To meet these challenges, the city installed nearly 90 automated flushing units, which helped reduce water loss, man-hours and costs, while meeting chlorine residual requirements. Mac Underwood, general manager of the Birmingham Water Works Board, spoke about the experience:

Q: What challenges were the city of Birmingham looking to solve?
A: We were looking for some automatic flushing units. We chose the Hydro-Guard® HG-2 unit.

Q: What products have you been using?
A: Hydro-Guard units have helped reduce our costs by about $2,500 per unit, we have nearly 200 units installed. Those units are able to turn on in the middle of the night and flush for a certain period of time. It helps control chlorine residual and disinfectant byproducts, so we think the units work really well for us. In total we save about $2,500 per unit per year. That ends up being somewhere close to about $500,000 savings on an annual basis.

Q: How important is controlling water loss for Birmingham?
A: Our water loss, at one point, was really high and with using the Hydro-Guard units and some additional metering for fire hydrant use, we’ve been able to cut that in half. It’s at about 12% right now, at one point it was up to about 28%. With Hydro-Guard and metering the fire hydrants, we’ve been able to reduce our water loss significantly.

For more information about Mueller Co.’s remote pressure monitoring system, visit www.droughtbook.com/#pressuremonitoring.

For more information on how Mueller’s automatic flushing systems can help your utility conserve water, visit www.droughtbook.com/#autoflushing.
Securing Fire Hydrants Prevents Unauthorized Water Loss

Maintaining hydrant integrity is vital to protecting a distribution system from vandalism and water theft, as well as unintentional damage from traffic accidents. These incidents lead to massive amounts of water lost in short periods of time. The effects are felt especially hard in areas of drought.

Safe and Secure

Keeping a hydrant secure can mean protecting water assets from a number of variables. Security is compromised when vandals or thieves attempt to break into a hydrant to cause intentional damage or steal water. While these acts can be major monetary losses to utilities, the water taken from the hydrants is equally valuable. An unsecured hydrant can also be an access point for someone seeking to contaminate the public water supply. Defending these assets is vital, as the city of Bozeman, MT, learned.

In the winter of 2003, the city faced an act of vandalism that led to more than 3 million gallons of lost water over a three-day period. The vandals improperly opened 13 hydrants, leading to costly damage throughout the city in addition to the enormous water loss. It took the city more than a week to regain the lost water.

After the incident, the city acted by installing Mueller® Hydrant-Defender® security devices in vulnerable areas of town. Soon after, the devices became part of the city’s standard specifications. Today, when someone buys a fire hydrant to place into the city’s distribution system, the Hydrant-Defender is included as part of the package. John Alston, operations superintendent for the city of Bozeman, said that since installing the devices, the city has not experienced any measurable water loss from hydrant tampering.

Unintentional Damage

Occasionally hydrant water loss occurs not from an intentional act but as a result of a traffic accident. In Southern California, where drought runs rampant, these accidents can waste enormous quantities of valuable water in a short period of time. In one hit-and-run incident in Sand City, CA, a car backed over a hydrant, causing a 40-ft geyser of water to shoot in the air for more than an hour. Not only did the accident lead to thousands of gallons of lost water, it also flooded neighborhood businesses and prompted area evacuations due to electrocution concerns.

When struck by a vehicle, unprotected wet barrel fire hydrants—commonly found in warm, drought-prone climates—will break, creating a geyser. Response time by emergency personnel can vary, but with the speed at which this water is lost, every second counts. By installing a device such as Jones Tell-Tail break-off check valves onto these wet barrel hydrants, municipalities still can be visually aware of a traffic accident. In Southern California, where drought runs rampant, these incidents lead to massive amounts of water lost in short periods of time.

For more information on how Mueller’s security solutions can protect your hydrants, visit www.droughtbook.com/hydrantintegrity.

Pipeline Assessments Help Extend Tight Budgets

During a drought, emphasis on water conservation is at a high. While utilities aim to reduce non-revenue water, customers are encouraged to use less billed water. Additional expenses—such as the energy required to pump water to these water-scarce regions, as well as regular infrastructure maintenance—can add up, leading to an overall loss of revenue.

To combat this issue, utilities should analyze their capital improvement programs (CIP) to identify areas in which spending cuts can be made. Performing a pipeline condition assessment can help determine whether pipe rehabilitation or replacement projects are necessary. Deferring or canceling these projects can help a utility cope with a revenue shortfall in a time of drought.

John Marciszewski, director of business development for Echologics, explained the pipeline condition assessment process and how it benefits the utility’s infrastructure, as well as its bottom line:

Q: What is the purpose of a pipeline condition assessment?

Marciszewski: The goal of condition assessment is to help utilities (owners) make more informed decisions about pipeline renewal decisions. Condition assessment data helps utilities to target their capital more effectively and mitigate risks of failure, particularly for critical pipelines.

Q: How can a pipeline condition assessment factor into a water utility’s overall capital improvement program?

Marciszewski: We use acoustic wall thickness testing, and chologics provided a quick, noninvasive technique to assess the condition of the pipe [and] understand how much remaining wall thickness we had left in our pipe,” says Ryan Flynn, senior principal engineer for Tacoma Public Utilities. “Then we were able to insert that information into our economic model and assess the remaining life and understand the condition and overall priority of main segments in our system.”

Overall, the utility has had three contracts with Echologics, assessing a total of 45 miles of AC and cast iron pipe throughout its system.

As a manager of your assets it gives you greater peace of mind, that you’re not replacing mains before they actually need to be replaced,” Flynn said. “You’re preserving that value that your ratepayers have paid for, and really mining that value out of the existing assets.”

Tacoma (Wash.) Public Utilities has more than 110 miles of asbestos cement (AC) pipe within its water system. As part of the Dumas Bay replacement project, Tacoma Water planned to replace 6,000 linear ft of AC pipe at an estimated cost of $1.4 million. The utility needed a means to assess the condition of this pipe and determine how much life was left in it. The utility chose the Echologics ePulse® acoustic condition assessment technology to perform this analysis. After performing the assessment, it was discovered that only 1,935 linear ft of pipe needed to be replaced, at a cost of $623,804.

“Echologics provided a quick, noninvasive technique to assess the condition of the pipe [and] understand how much remaining wall thickness we had left in our pipe,” says Ryan Flynn, senior principal engineer for Tacoma Public Utilities. “Then we were able to insert that information into our economic model and assess the remaining life and understand the condition and overall priority of main segments in our system.”

When we were able to perform this analysis, it was discovered that only 1,935 linear ft of pipe needed to be replaced, at a cost of $623,804.
Broken water mains, water loss and property damage—why let a preventable problem cost large sums of money and damage your reputation?

While it often starts with a leak, historically many utilities have waited until there is an evident problem or rupture to react. Today’s utilities have a cost-effective and easy-to-deploy monitoring option.

Imagine being immediately notified about a problem in a transmission main. The EchoShore®-TX platform will call, text or email you promptly after detecting a leak or anomaly.

Through monitoring and notification, your response time can be significantly reduced to help mitigate the risk and cost of operating critical transmission mains.

For more information about the EchoShore-TX platform, visit www.droughtbook.com/#echoshore-tx.

GET TO KNOW YOUR WATER MAIN
The EchoShore-TX platform provides a high level of operation insight and can simultaneously monitor several parameters including:

- Leaks
- Static pressure
- Flow
- Temperature
- Chlorine levels
- Other operator requirements